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Abstract—A reasonable starting place for developing deci-
sion fusion rules of families of classification systems is using
the logical AND and OR rules. These two rules, along with
the unary rule NOT, can lead to a Boolean algebra when a
number of properties are shown to exist. This paper examines
how these rules for classification system families comprise a
Boolean algebra of systems. This Boolean algebra of families is
then shown under assumptions of independence to be isomorphic
to a Boolean Algebra of Receiver Operating Characteristic (ROC)
curves. These decision fusion rules produce ROC curves which
become the bounds by which to test non-boolean, possibly non-
decision fusion rules for performance increases. We give an
example to demonstrate the usefulness of this Boolean Algebra
of ROC curves.

Keywords: fusion rules, boolean algebra, receiver operat-
ing characteristic (ROC) curves, fusor, information fusion.
optimization.

I. INTRODUCTION AND PROBLEM STATEMENT

Given a finite number of families of classification systems
(with 2-label output), how do we find the best possible
decision fusion rule (also called label fusion rule)? In the
realm of deterministic rules, Boolean rules comprise the
“whole show”(almost) for decision fusion. It has been shown
that under the assumption of independence of classification
systems, the Boolean AND operation on families of classifi-
cation systems induces another Boolean AND operation on
the receiver operating characteristic (ROC) curves of each
corresponding family [1]. In this paper we show this extends
to the Boolean OR operation and the unary NOT operation.
With these three operations defined, we develop a Boolean
Algebra of ROC curves which corresponds to the Boolean
algebra of a finite number of families of classification systems.
This Boolean Algebra of families of classification systems is
the easiest fused systems a fusion engineer can design, build,
test, and evaluate. With this Boolean Algebra of ROC curves,
one does not have to physically build or test the systems in
order to determine its performance, and thus, determine which
design is optimal.

We develop this paper first by defining families of clas-
sification systems in Section II, and review how information
fusion occurs along the nodes of these families. Section III is

devoted to the discussion on the fusion rules used. Section IV
briefly reviews Boolean Algebras that is used in Section V, the
important results, when we prove that a Boolean algebra of
families of classification systems is isomorphic to a Boolean
algebra of ROC curves. We give an example in Section VI,
and conclude with Section VII.

Several authors have considered the Boolean Algebra of
systems generated by ANDing and ORing the original systems,
see [2], [3], and [4], to name a few.

II. FAMILIES OF CLASSIFICATION SYSTEMS

The classification system can be defined mathematically,
which allows the fused system to be written in terms of the
individual systems. Let E be a population set of outcomes. Let
E be a σ-algebra of subsets of E , then (E ,E) is a measurable
space [5]. Let P be a probability measure defined on E, then
(E ,E, P ) is a probability measure space. Let s be a sensor that
produces data as its output, i.e., s is a mapping of outcomes
from the population set E to a datum. Let D denote the data set.
Then we write s : E → D or its diagram E s−→ D. Examples
of datum from this data set may take on many forms such as
infrared imagery, radar signals, data streams, or video. This
data may be too difficult to classify using its current form, so
a mapping p defined on D is used to produce an element x,
called a feature. Typically, this element x is a vector of real
numbers, though it need not be. Let the mapping p represent
a processor that takes a datum from D and produces a feature,
i.e., D p−→ F . Since x might be a vector of real numbers, then
F ⊂ R

N for some positive integer N . Let Θ be a threshold
set (or a set of parameters); maybe, Θ = [0, 1] or Θ = R =
(−∞,∞). For each θ ∈ Θ let aθ be a classifier mapping F
into a label set L. That is, aθ : F → L or F aθ−→ L for each
θ ∈ Θ. For a two-class problem, examples of a label set could
be L = {true, false}, L = {T,F},L = {0, 1} or even L =
{target,non-target}. In this paper, we use L = {t, n} where t
= “target”and n = “non-target”. The graphical representation
of these mappings is given by the following diagram.

E s �� D
p �� F

aθ �� L .

Define the system Aθ to be the composition of these
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mappings for each θ ∈ Θ. That is, for each θ ∈ Θ, Aθ =
aθ ◦ p ◦ s. Graphically, the diagram for the system is written
as

E
Aθ �� L

for each θ ∈ Θ.

A. Two Classification Systems

There are many ways in which to express two (or more)
classification systems. In this paper, however, the multiple
classification system must be developed using two main
premises. First, the systems to be combined are fused together
using label fusion, that is, once each system has produced
a label for a specific outcome from the event set, these
labels are combined together to generate one overall label
for that outcome. The creation of this overall label from the
underlying classification systems defines how the systems are
fused together, via the labels. Second, the label set for all
systems considered, including each individual system and the
fused classification system, contains two values or two classes.
Examples of possible members of this label set were given
previously, but the label set considered here is L = {t, n}
where t = “target”and n = “non-target”. Using the premises
of label fusion and a two-class label system, representations
for a two classification system are developed.

Consider the case when two sensors, s1 and s2, observe
outcomes occurring in the same population set E . Assume they
produce datum in data sets D1 and D2, respectfully. That is,
s1 : E → D1 and s2 : E → D2. Further, assume sensors
s1 and s2 each have a processor, p1 and p2, respectively,
which maps datum in the respective data sets, D1 and D2, to
features in the feature sets F1 and F2. In particular, assume
p1 : D1 → F1 and p2 : D2 → F2. Suppose that the family
of classifiers for p1 and s1 is given by {aθ : θ ∈ Θ} and
that the family of classifiers for p2 and s2 is given by another
family, {bφ : φ ∈ Φ}. Let aθ : F1 → L1 for each θ ∈ Θ
and bφ : F2 → L2 for each φ ∈ Φ. Then the labels that
are produced from each of the classification systems are fused
together to create an overall label for the outcome of interest.
The composition of these mappings yield systems represented
by the following diagram.

D1
p1 �� F1

aθ �� L1

E

s1
����������

s2

���
��

��
��

�

D2
p2 �� F2

bφ �� L2

For these two classification systems the compositions
yield the systems Aθ = aθ ◦ p1 ◦ s1 for each θ ∈ Θ and
Bφ = bφ ◦ p2 ◦ s2 for each φ ∈ Φ. Thus, the individual

diagrams are

E
Aθ �� L1

E
Bφ �� L2

and the two families of classification systems will be denoted
by A ≡ {Aθ : θ ∈ Θ} and B ≡ {Bφ : φ ∈ Φ}.

The two classification systems developed above map
outcomes from the population set into different data, feature,
and label sets, which are then used to fuse the classification
systems together. There are, however, other ways to label out-
comes from the event set. In this paper, classification systems
can map outcomes into either the same or different data sets or
the same or different feature sets. The sets which must remain
the same for the mathematical development contained herein
are the event set E and the two-class label set L. Therefore,
the classification systems must be acting from the same event
set, map into either the same or different data and feature sets
and eventually map into the same label set. That is,

L

E

Aθ

���������

Bφ

���
��

��
��

L
B. ROC Curves

Each mapping in the classification system, as well as the
composition of mappings, has a pre-image. Let f be a function
mapping set X into set Y , so f : X → Y . Given a subset
Y ⊂ Y we define the pre-image of f to be the subset in X by

f �(Y ) = {x ∈ X : f(x) ∈ Y }.
The pre-image is sometimes called the inverse image, although
the mapping f need not be invertible, yet the superscript −1
is used. Because this construction creates a natural mapping
from subsets of Y into subsets of X , the natural symbol � will
be used instead of −1. Therefore, we write f �(Y ) = X . If
we consider the entire classification system as a composition
of mappings, then we can write the pre-image of a specific
label � ∈ L produced by the classification system Aθ . Let
L� = {�} so that then A�

θ(L�) = {e ∈ E : Aθ(e) ∈ L�}. The
use of pre-images allows us to take the resulting labels and
express these in terms of the underlying probabilities. This is
demonstrated in the development of the ROC curve.

Assume the label set is L = {t, n} where t and n may be
real values or symbols and the label t represents a “target”and
the label n represents a “non-target”. Define Lt = {t} and
Ln = {n}. We assume the event set E can be partitioned into
a target event set containing all target outcomes and a non-
target event set containing non-target outcomes. Denote the
true target event set as Et and the true non-target event set as
En. Thus, E = Et ∪ En and Et ∩ En = ∅.



In order to quantify how well the classification system
Aθ performs, we appeal to the probability measure space
(E ,E,P ) to compute the following four performance quan-
tifiers. Let PTP (Aθ) denote the probability of true positive
classification of the classification system Aθ. Then PTP (Aθ)
is the probability that the classification system Aθ labels an
outcome, e, as a target label, t, given that the outcome really is
a target outcome from the target event set, Et. Mathematically,
PTP (Aθ) is defined by the conditional probability

PTP (Aθ) = P{Aθ(e) = t | e ∈ Et} =
P

(
A�

θ (Lt) ∩ Et

)
P (Et)

.

Let PFP (Aθ) denote the probability of false positive classi-
fication of the system Aθ. Then PFP (Aθ) is the probability
that the classification system Aθ labels an event outcome, e,
as a target label, t, given that the outcome is really a non-target
from the non-target set of the event set, En. Mathematically,
PFP (Aθ) is defined by the conditional probability

PFP (Aθ) = P{Aθ(e) = t | e ∈ En} =
P

(
A�

θ (Lt) ∩ En

)
P (En)

.

Let PTN (Aθ) denote the probability of true negative classi-
fication of the system Aθ. Then PTN (Aθ) is the probability
that the classification system Aθ labels an event outcome, e,
as a non-target label, n, given that the outcome really is a
non-target outcome from the non-target event set, En. Mathe-
matically, PTN (Aθ) is defined by the conditional probability

PTN (Aθ) = P{Aθ(e) = n | e ∈ En} =
P

(
A�

θ (Ln) ∩ En

)
P (En)

.

Let PFN (Aθ) denote the probability of false negative classi-
fication by the system Aθ. Then PFN (Aθ) is the probability
that the classification system Aθ labels an event outcome, e,
as a non-target label, n, given that the outcome is really a
target outcome from the target event set, Et. Mathematically,
PFN (Aθ) is defined by the conditional probability

PFN (Aθ) = P{Aθ(e) = n | e ∈ Et} =
P

(
A�

θ (Ln) ∩ Et

)
P (Et)

.

Note that each of these four probabilities are dependent on
the threshold value, θ. A single value for each of these
probabilities is computed for each value of θ. As the value of θ
changes, so do the values of PFP (Aθ), PTP (Aθ), PTN (Aθ)
and PFN (Aθ). Define Θ as a set of possible thresholds and
for each θ ∈ Θ, and the set of triples

τA = {(θ, PFP (Aθ), PTP (Aθ)) : θ ∈ Θ}

to be the trajectory of A. We can project this trajectory onto
the second and third component to yield the set

fA = {(PFP (Aθ), PTP (Aθ)) : θ ∈ Θ}.

If Θ is homeomorphic to the real numbers R, then the
trajectory τA will be a curve in R

3 and the projection fA will

Figure 1. A ROC trajectory (solid) and its projection the ROC curve (dashed).

be a curve in R
2 (more specific, a curve in the unit square

[0, 1] × [0, 1]). Formally, this curve is called the ROC curve
for the system family A. An example of this projection is
given in Figure 1. For the case when Θ is discrete, the ROC
“curve”is a set of discrete points.

If Θ is a multi-dimensional set then this analysis will
not yield a single curve in the PFP -PTP plane. Instead, a
collection of curves is created. Therefore, we choose the upper
frontier to be the ROC curve as representative of the classifier
performance.

Definition 1: (ROC function, ROC curve) Let A = {Aθ :
θ ∈ Θ} be a family of classification systems defined on the
probability space (E ,E, P ) mapping to the label set L = {t, n}
with parameter set Θ. For each p ∈ [0, 1] , define the set

Θp ≡ {PTP (Aθ) : θ ∈ Θ and PFP (Aθ) ≤ p}.

For p ∈ [0, 1], if Θp is nonempty then define

fA(p) = max{PTP (Aθ) : θ ∈ Θ and PFP (Aθ) ≤ p}. (1)

If Θp is empty then fA(p) is not defined. The function fA is
called the ROC function. The graph of fA is called the ROC
curve.

In practice, the set Θp may be empty for certain values
of p. We avoid the discussion of this case and assume that the
ROC function is defined for all p ∈ [0, 1]. We make this clear
by defining a total ROC function.

Definition 2: (Total ROC function, Total ROC curve) We
say a ROC curve is total if its ROC function is defined for all
p ∈ [0, 1], that is, the ROC function is a total function.

A property of a total ROC curve are given in the following
theorem.

Theorem 1: Let A = {Aθ : θ ∈ Θ} be a family of
classification systems. Then fA is a non-decreasing function.
That is, for every p, q ∈ [0, 1] with p ≤ q then fA(p) ≤ fA(q).



Proof: Let p, q ∈ [0, 1] with p ≤ q then Θp ⊆ Θq

therefore,

fA(p) = max
θ∈Θp

PTP (Aθ) ≤ max
θ∈Θq

PTP (Aθ) = fA(q).

For notational purposes we denote the collection of total
ROC function by R.

Definition 3: (Set of total ROC functions) Let the set of
total ROC functions be denoted by

R = {f : [0, 1] → [0, 1] | f is non-decreasing on [0, 1]}.

Notice that we do not require continuity of the functions.

We write f = g to mean the point-wise equality, that is,
f(p) = g(p) for all p ∈ [0, 1].

III. FUSION RULES

There are two types of fusion for classification systems.
The first type allows for the families of classification systems
which are to be fused to have exactly the same label set. We
mean exactly the same, and not isomorphic, so that if the
label set is, in fact, L = {target, non-target} for each family,
then this means that the actual definition of a target label is
identical for each. This allows for each family to partition
the population set in the same way. This type of information
fusion we call within-fusion [1].

The diagram for label fusion for two systems is

D1
p1 �� F1

aθ �� L

E

s1
����������

s2

���
��

��
��

�
� �� � Rule �� �� L

D2
p2 �� F2

bφ �� L

Although many label-fusion rules exist, in this paper we
focus on the Boolean OR and AND rules. These straightfor-
ward, “hard” rules will be used to develop a mathematical
expression for the ROC curve of the fused classification system
using only properties of the ROC curves from the individual
systems. In this manner, if we know the performance of the
individual systems, we can compute the performance of the
fused system using these Boolean label-fusion rules without
any replication in experimentation.

Let the ROC curve associated with the classification
system family A = {Aθ : θ ∈ Θ} be denoted by fA and the
ROC curve associated with the classification system family
B ≡ {Bφ : φ ∈ Φ} be denoted by fB. Recall that the label set
L = {t, n}.

1) AND Rule: The AND (conjunction) rule is a binary
operation defined on L. We denote the AND operation by the
join symbol ∧. Its definition is given in the table:

∧ t n

t t n
n n n

The new classification system Aθ∧Bφ is defined by the point-
wise AND operation on its output, that is,

[Aθ ∧ Bφ] (e) ≡ Aθ(e) ∧ Bφ(e) for all e ∈ E . (2)

This produces a new classification system family C
AND =

{Aθ ∧ Bφ : θ ∈ Θ, φ ∈ Φ}. Thus, to be labeled as “target”,
both the label from systems Aθ and Bφ must be the “target
” label. For brevity we write A ∧ B = C

AND, thus, using the
AND symbol ∧ to represent the binary label AND operation
(e.g., t∧n), the binary system AND operation (e.g., Aθ∧Bφ),
and the binary family AND operation (e.g., A ∧ B).

2) OR Rule: The OR (disjunction) rule is also a binary
operation defined on L. We denote the OR operation by the
meet symbol ∨. Its definition is given in the table:

∨ t n

t t t
n t n

Then the new classification system Aθ ∨Bφ is defined by the
point-wise OR operation

[Aθ ∨ Bφ] (e) ≡ Aθ(e) ∨ Bφ(e) for all e ∈ E (3)

and yields a new classification system family C
OR = {Aθ ∨

Bφ : θ ∈ Θ, φ ∈ Φ}. Thus, to be labeled as “target”, either
the label from system Aθ or Bφ must be the “target”label.
For brevity we write A ∨ B = C

OR.

In comparison, the AND rule is more conservative than
the OR rule in labeling of an object as target. If there are
negative consequences in being labeled as a target, then a more
conservative rule may be warranted in order to avoid excessive
false positives. In the case of disease detection, however,
the OR rule may be warranted in preventative screening, for
instance, in order to avoid excessive false negatives and failure
to diagnose a disease at a potentially earlier and treatable stage
of development.

3) NOT Rule: The NOT (negation or complementation)
rule is a unary operation defined on L. We denote the NOT
operation by ⇁. Its definition is given in the table:

⇁ t n

n t

Then the new classification system
⇁

Aθ is defined by the point-
wise NOT operation

[
⇁

Aθ](e) ≡
⇁

Aθ(e) for all e ∈ E (4)

and yields a new classification system family
⇁

A = {
⇁

Aθ : θ ∈
Θ}. Thus, to be labeled as “target”, the label from system Aθ



must be the “non-target”. Clearly, the NOT rule is a unary rule
and not a fusion rule,but it will be useful.

IV. BOOLEAN ALGEBRAS OF A FINITE COLLECTION OF

FAMILIES OF CLASSIFICATION SYSTEMS

A. Boolean Algebras

The definition of a Boolean Algebra is given below [6].

Definition 4: A Boolean Algebra is an algebraic struc-
ture, denoted by (A ,=,∧,∨,⇁) where

A is a nonempty set of elements;
= denotes element equality;
∧ is a binary operation called AND or conjunction;
∨ is a binary operation called OR or disjunction;
⇁ is a unary operation called NOT or negation (or

complementation).

And the following axioms hold true:

1) A is closed w.r.t. ∧,∨ and ⇁. For every a, b ∈ A

a ∧ b ∈ A a ∨ b ∈ A
⇁
a ∈ A .

2) A is associative w.r.t. ∧ and ∨. For every a, b, c ∈ A

(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c) .

3) A is commutative w.r.t. ∧ and ∨. For every a, b ∈ A

a ∧ b = b ∧ a a ∨ b = b ∨ a .

4) A has unique identities w.r.t. ∧ and ∨. There exists
unique elements l, u ∈ A such that for every a ∈ A

a ∧ u = a a ∨ l = a .

5) A is absorptive w.r.t. ∧ and ∨. For every a, b ∈ A

a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a .

6) A is distributive w.r.t. ∧ and ∨. For every a, b, c ∈ A

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

7) A contain complements w.r.t. ∧ and ∨. For every a ∈ A

a ∧ ⇁
a = l a ∨ ⇁

a = u .

There are several other properties that follow from these
axioms, see [6] for a larger list.

B. Boolean Algebra Generated from a finite number of Clas-
sification System Families

There are two special total classification system families
of interest. The “target ”family T and the “non-target” family
N:

T = {Tα : α ∈ [0, 1]} and Tα(e) = t for all e ∈ E
N = {Nβ : β ∈ [0, 1]} and Nβ(e) = n for all e ∈ E

A result that is straightforward is the following.

Theorem 2: Let C denote the collection of total clas-
sification system families defined on the probability space

(E ,E, P ) mapping to the label set L = {t, n} such that each
system (in each family) is measurable with respect to E. Then
(C ,=,∧,∨,⇁) is a Boolean Algebra.

Suppose one has K families of total classification system
families that are distinct, denoted by

G = {A
(1), A(2), . . . , A(K)}.

More specifically, assume each A
(k) cannot be produced from

the other families by using the AND, OR and NOT operations.
From G one can generate a Boolean algebra of total classifi-
cation system families, denoted by B(G ), taking all possible
combinations of AND, OR, and NOT. This Boolean algebra is
call a Free Boolean Algebra and G is called the generator and
acts likes an “independent” set (in the same fashion as linearly
independent sets are to vector spaces). From the axioms and
identities, the cardinality of B(G ) is 22K

[7].

The main assumption in this paper is that the classifica-
tion systems are independent, that is, the occurrence or non-
occurrence of an event classified by one system will not affect
the occurrence or non-occurrence of another event classified
by the other system. We derive expressions for the probability
of true and false positive for the OR and AND label-fusion
rules that can be simplified using the following definition.

Definition 5: (Independent Classification Systems) Let
(E ,E, P ) be a probability space. Let L = {t, n} be a label
set. Let A,B : E → L be two classification systems. We
say that the systems A,B are system independent if they
are statistically independent as random variables. Thus, the
collection of pre-image events are independent, so that,

P (A�({�}) ∩ B�({�})) = P (A�({�}))P (B�({�}))

for all � ∈ {t, n}.

We apply this notion of independence to pre-images of
the classification systems. Recall the systems Aθ = aθ◦p1◦s1

for each θ ∈ Θ and Bφ = bφ ◦p2 ◦ s2 for each φ ∈ Φ. These
compositions take sets of outcomes from the event set and
map them to sets of labels in the label set. The pre-images of
these non-target label sets (A�

θ(Ln) and B�
φ(Ln)) trace the

mappings back to corresponding sets in the sample space.
Thus, if classification systems Aθ and Bφ are independent,
their pre-images will be independent, as example,

P (A�
θ({n}) ∩ B�

φ({n})) = P (A�
θ({n}))P (B�

φ({n})).

V. BOOLEAN ALGEBRA OF ROC CURVES

A. AND Label-Fusion ROC Formula

Consider the development of the probabilities of true and
false positive (PTP (CAND

θ,φ) and PFP (CAND
θ,φ), respectively) for

the AND label-fusion rule under the assumption of indepen-
dence.

Theorem 3: (AND Label-Fusion ROC Formula) Let
(E ,E, P ) be a probability space and L = {t, n} be a label
set. Let A = {Aθ : θ ∈ Θ} and B = {Bφ : φ ∈ Φ} be
measurable and independent families of classification systems



with admissible parameter sets, designed to classify the same
target outcomes in E . Let fA and fB denote their corresponding
ROC curves. Let A∧B be the resulting family of classification
systems. Then the ROC curve fA∧B is given by

fA∧B(r) = max
p,q∈[0,1]

pq=r

fA(p)fB(q) (5)

for every r ∈ [0, 1]. Furthermore,

fA∧A = fA.

Proof of this formula can be found in [1], [8] and [9] This
formula motivates the definition of the transformation T∧
associated with the AND operation ∧ and acts on the ROC
curves. Specifically, given two ROC curves f, g ∈ R, and for
each r ∈ [0, 1] we define

[T∧(f, g)] (r) =




max
p,q∈[0,1]

pq=r

f(p)g(q) for f �= g

f(r) for f = g
(6)

This transformation can be shown to have the following
properties:

1) (closure) T∧ is defined on all of R × R, i.e. D(T∧) =
R × R.

2) (associative) T∧(f, T∧(g, h)) = T∧(T∧(f, g), h) for all
f, g, h ∈ R.

3) (symmetric) T∧(f, g) = T∧(g, f) for all f, g ∈ R.
4) (identity) T∧(f, 1) = f for all f ∈ R.
5) (idempotent) T∧(f, f) = f for all f ∈ R.
6) (minimum element) T∧(f, 0) = 0 for all f ∈ R.

This shows that T∧ is a binary operation, and motivates
the creation of a new symbol that represents it. Given f, g ∈ R
we will write

f � g ≡ T∧(f, g).

We read f � g as ”f and g”. We use a different symbol since
∧ is the binary operation dealing with classification systems
and � deals with ROC functions.

B. OR Label-Fusion ROC Formula

Theorem 4: (OR Label-Fusion ROC Formula) Let
(E ,E, P ) be a probability space and L = {t, n} be a label
set. Let A = {Aθ : θ ∈ Θ} and B = {Bφ : φ ∈ Φ} be
two measurable, independent families of classification systems
with admissible parameter sets, designed to classify the same
target outcomes in E . Let fA and fB denote their corresponding
ROC curves. Let A∨B be the resulting family of classification
systems. Then the ROC curve fA∨B is given by

fA∨B(r) = max
p,q∈[0,1]

p+q−pq=r

[fA(p) + fB(q) − fA(p)fB(q)] (7)

for every r ∈ [0, 1]. Furthermore,

fA∨A = fA.

Proof of this formula can be found in [1].

There is a second transformation, T∨, associated with the
OR operation ∨ that acts on ROC functions. Specifically, given
two ROC curves f, g ∈ R, and for each r ∈ [0, 1] we define

[T∨(f, g)] (r) =




max
p,q∈[0,1]

p+q−pq=r

[f(p) + g(q) − f(p)g(q)] , f �= g

f(r), f = g

We list some properties of the transformation T∨.

1) (closure) T∨ is defined on all of R × R, that is,
D(T∨) = R × R.

2) (associative) T∧(f, T∧(g, h)) = T∧(T∧(f, g), h) for all
f, g, h ∈ R.

3) (symmetric) T∨(f, g) = T∨(g, f) for all f, g ∈ R.
4) (identity) T∨(f, 0) = f for all f ∈ R.
5) (idempotent) T∨(f, f) = f for all f ∈ R.
6) (maximal element) T∨(f, 1) = 1 for all f ∈ R.

We now have that T∨ is a binary operation, and motivates
the creation of a new symbol that represents this binary
operation. Given f, g ∈ R we will write

f � g ≡ T∨(f, g).

We read f � g as ”f or g”. We use the symbol � rather than
∨ in order to distinguish it from dealing with classification
systems.

C. NOT ROC Formula

Given the family A = {Aθ : θ ∈ Θ} with ROC curve fA

what is the ROC curve for
⇁

A? Since, we have from Equation 4
that

⇁

A = {
⇁

Aθ : θ ∈ Θ}

and [
⇁

Aθ

]
(e) =

⇁

Aθ(e) for every e ∈ E ;

and, since E =A�
θ(Lt) ∪A�

θ(Ln), we have by the disjunctive
properties:

PTP (
⇁

Aθ) =
P

(
⇁

A
�

θ(Lt) ∩ Et

)

P (Et)

=
P

(
A�

θ(Ln) ∩ Et

)
P (Et)

= PFN (Aθ) = 1 − PTP (Aθ)

PFP (
⇁

Aθ) =
P

(
⇁

A
�

θ(Lt) ∩ En

)

P (En)

=
P

(
A�

θ(Ln) ∩ En

)
P (En)

= PTN (Aθ) = 1 − PFP (Aθ)



Given p ∈ [0, 1] then

f⇁
A
(p) = max

θ∈Θ

{
PTP (

⇁

Aθ) : PFP (
⇁

Aθ) ≤ p

}

= max
θ∈Θ

{1 − PTP (Aθ) : 1 − PFP (Aθ) ≤ p}

= 1 − min
θ∈Θ

{PTP (Aθ) : PFP (Aθ) ≥ 1 − p}

= 1 − max
θ∈Θ

{PTP (Aθ) : PFP (Aθ) ≤ 1 − p}

= 1 − fA(1 − p).

Observe that f⇁
A

will be nondecreasing, hence, will satisfy
the condition to be in R.

Theorem 5: (NOT Label-Fusion ROC Formula) Let
(E ,E, P ) be a probability space and L = {t, n} be a label
set. Let A = {Aθ : θ ∈ Θ} be a total family of classification
systems. Let fA denote its corresponding ROC curve. Let
⇁

A={
⇁

Aθ : θ ∈ Θ} be the resulting family of classification
systems by the NOT operation. Then the ROC function f⇁

A
is

given by
f⇁

A
(p) = 1 − fA(1 − p) (8)

for every p ∈ [0, 1].
This motivates the operator N that acts on ROC curves

f ∈ R defined by

[N (f)] (p) = 1 − f(1 − p)

for every p ∈ [0, 1].
The operator N satisfies the following properties:

1) (closure) N is defined on all of R, that is, D(N ) = R.
2) (involution) N (N (f)) = f for all f ∈ R.
3) (identity) N (0) = 1,N (1) = 0.

We now have that N is an unary operation that acts like
a negation, thus motivates the creation of a new NOT symbol
acting on ROC functions (and consequently ROC curves).
Given f ∈ R we will write

¬
f ≡ N (f).

We read
¬
f as “not f”.

Theorem 6: (ROC Boolean Algebra) (R,=,�,�,¬) is a
Boolean Algebra of ROC curves.

Our main result is the following theorem.

Theorem 7: Let G = {A
(1), A(2), . . . , A(K)} be a col-

lection of K families of total classification systems that are
mutually independent. Let (B(G ),=,∧,∨,⇁) denote the
Boolean Algebra of total, independent classification system
families generates by G . Let F = {fA(1) , fA(2) , . . . , fA(K)}
be the collection of K ROC curves corresponding to G . Then
(B(F ),=,�,�,¬) is a Boolean Algebra of ROC curves that
is isomorphic to (B(G ),=,∧,∨,⇁).
The Proof of this theorem is too long for this conference
proceedings. We motivate its usefulness in the example in the
next section.
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Figure 2. The ROC curves fA (red), fB (blue), and fC (green).

VI. EXAMPLE

Consider a problem where we know the ROC curves
for the three independent classification systems families A,
B, and C. Assume fA(p) = p1/4, fB(p) = tanh(4p), and
fC(p) = 2p1/2.1 − p2/2.1, see Figure (2) for their graphs.
Observe that no single ROC curve completely dominates the
others. The independent families generated by {A, B, C} of
interest is given in the table below. We do not use the NOT
of these families since their ROC curves will fall below the
chance line implying poor performance.

single pairs triples
A A ∧ B (B ∧ C) ∧ A

B A ∧ C (A ∧ B) ∨ A

C B ∧ C (A ∧ C) ∨ A

A ∨ B (B ∧ C) ∨ A

A ∨ C (B ∨ C) ∨ A

B ∨ C (A ∧ B) ∨ B

(A ∧ C) ∨ B

(B ∧ C) ∨ B

(A ∧ B) ∨ C

(A ∧ C) ∨ C

(B ∧ C) ∨ C

The majority vote family is

V = (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C)
= (A ∨ B) ∧ (A ∨ C) ∧ (B ∨ C)

We compute the ROC curves for all these families using the
formulas given in Equations (5) and (7) and plot them all in
Figure 3. It appears that the majority vote family dominates
all the other families, but upon closer inspect we see that for
small false positive values (< 0.03) the majority vote is not
the best. If one chooses different ROC curves then all these
curves will change, and the majority may not dominate as
much. Further research will be performed to determine this
dependency.
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Figure 3. The ROC curves of all the families in the Boolean Algebra
generated by fA (red), fB (blue), and fC (green). The blacks curves are the
ROC curves generated using Equations (5) and (7). The arrow points to the
curve that corresponds to the majority vote family.

VII. CONCLUSIONS

We have shown that for label fusion of a finite number
of classification system families, we can start with Boolean
rules of AND, OR, and NOT. From this we develop a
Boolean Algebra of classification system families. Under the
assumption of the independence of these families, we have
that this Boolean Algebra of classification system families
is represented (in fact, isomorphic) by a Boolean Algebra of
ROC curves. The ROC Boolean Algebra is constructed using
the ROC curves of the original families. There are several
possible uses for this algebra. One is that by calculating out
all the elements of ROC Boolean Algebra from the original
families, the cost of testing a Boolean decision rule is virtually
zero. A second use is that, if we are considering a non-Boolean
decision rule or a fusion rule built from the data set level or
feature set level of the classification systems, by calculating
the entire Boolean Algebra and taking the frontier of the
resulting set of ROC curves, we can construct a bound by
which to compare the performance of any other fusion rule,
deterministic or randomized (see Thorsen [10]). That is, if the
new fusion rule does not out perform any Boolean rule then
why use it?

The applications of this procedure are manifold. A re-
searcher is empowered to leverage legacy classification sys-
tems in ways he/she may not have thought of before, by using
completely constructive testing using the ROC curves of the
legacy systems.
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